POLINOMIOS

Polinomios de una variable

Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como \scriptstyle\mathbb{R} o \scriptstyle\mathbb{C}, en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y n \in \mathbb{N}, entonces un polinomio, P_{}^{}, de grado n en la variable x es un objeto de la forma

P(x)_{}^{} = a_n x^n + a_{n-1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}.

Un polinomio P(x) \in K[x] no es más que una sucesión matemática finita \left\{{a_n}\right\}_n tal que a_n \in K.

Representado como:

P(x)_{}^{}=a_0+a_1x+a_2x^2+...+a_nx^n

el polinomio se puede escribir más concisamente usando sumatorios como:

P(x) = \sum_{i = 0}^{n} a_{i} x^{i}.

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama el coeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, al polinomio se le llama mónico o normalizado.

Polinomios de varias variables

Como ejemplo, de polinomios de dos variables desarrollando los binomios:

(2)\begin{cases}
(x + y)^2 = x^2 + 2xy + y^2\\
(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\\
(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \end{cases}

Estos polinomios son mónicos, homogéneossimétricos y sus coeficientes son coeficientes binomiales.

Para obtener la expansión de las potencias de una resta (véase productos notables), basta con tomar -y en lugar de y en el caso anterior. La expresión (2) queda de la siguiente forma:

(x-y)^2=x^{2}-2xy+y^{2}\,

Los polinomios de varias variables, a diferencia de los de una variable, tienen en total más de una variable. Por ejemplo los monomios:

5xy, 3xz^2, 4xy^2z, \dots

En detalle el último de ellos 4xy_{}^2z es un monomio de tres variables (ya que en él aparecen las tres letras xy y z), el coeficiente es 4, y los exponentes son 1, 2 y 1 de xy y z respectivamente.

Grado de un polinomio

Se define el grado de un monomio como el mayor exponente de su variable. El grado de un polinomio es el del monomio de mayor grado.

Ejemplos

P(x) = 2, polinomio de grado cero (el polinomio solo consta del término independiente).

P(x) = 3x + 2, polinomio de grado uno.

P(x) = 3 + 2x, polinomio de grado dos.

P(x) = 2x3+ 3x + 2, polinomio de grado tres.

Convencionalmente se define el grado del polinomio nulo como \scriptstyle -\infty. En particular los números son polinomios de grado cero.

Operaciones con polinomios

Los polinomios se pueden sumar y restar agrupando los términos y simplificando los monomios semejantes. Para multiplicar polinomios se multiplica cada término de un polinomio por cada uno de los términos del otro polinomio y luego se simplifican los monomios semejantes.

Ejemplo

Sean los polinomios: P(x) = (2x_{}^3+4x+1) y Q(x)_{}^{} = (5x^2+3) , entonces el producto es:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (2x_{}^3+4x+1)(5x^2) + (2x^3+4x+1)(3)= (10x_{}^5 + 20x^3 + 5x^2) + (6x^3+12x+3)= 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Para poder realizar eficazmente la operación se tiene que adquirir los datos necesarios de mayor a menor. Una fórmula analítica que expresa el producto de dos polinomios es la siguiente:

P(X)Q(X)_{}^{} =  \left( \sum_{i=0}^m a_i X^i \right)
\left(\sum_{j=0}^n b_j X^j \right) = \sum_{k=0}^{m+n} \left(\sum_{p=0}^k a_p b_{k-p} \right) X^k

Aplicando esta fórmula al ejemplo anterior se tiene:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (1\cdot 3)x_{}^0 + (4 \cdot 3)x^1 + (1 \cdot 5)x^2 + (4\cdot 5+ 2\cdot 3)x^3 + (0)x^4 + (5\cdot 2)x^5 = 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Puede comprobarse que para polinomios no nulos se satisface la siguiente relación entre el grado de los polinomios \scriptstyle P(X)\scriptstyle Q(X) y el polinomio producto \scriptstyle P(X)Q(X):

(*)\mbox{gr}(P(X)Q(X)) = \mbox{gr}(P(X)) + \mbox{gr}(Q(X))\,

Puesto que el producto de cualquier polinomio por el polinomio nulo es el propio polinomio nulo, se define convencionalmente que \scriptstyle \mbox{gr}(0) = -\infty (junto con la operación \forall p: -\infty + p = -\infty) por lo que la expresión (*) puede extenderse también al caso de que alguno de los polinomios sea nulo.

Funciones polinómicas[

Una función polinómica es una función matemática expresada mediante un polinomio. Dado un polinomio P[x] se puede definir una función polinómica asociada al polinomio dado substituyendo la variable x por un elemento del anillo:

f_P:A \to A,\qquad \qquad a\in A \mapsto f_P(a)=a_n a^n + a_{n-1}a^{n-1}+\dots + a_1 a + a_0\in A

La funciones polinómicas reales son funciones suaves, es decir, son infinitamente diferenciables (tienen derivadas de todos los órdenes). Debido a su estructura simple, las funciones polinómicas son muy sencillas de evaluar numéricamente, y se usan ampliamente en análisis numérico para interpolación polinómica o para integrar numéricamente funciones más complejas. Una manera muy eficiente para evaluar polinomios es la utilización de la regla de Horner.

En álgebra lineal el polinomio característico de una matriz cuadrada codifica muchas propiedades importantes de la matriz. En teoría de los grafos el polinomio cromático de un grafo codifica las distintas maneras de colorear los vértices del grafo usando x colores.

Con el desarrollo de la computadora, los polinomios han sido remplazados por funciones spline en muchas áreas del análisis numérico. Las splines se definen a partir de polinomios y tienen mayor flexibilidad que los polinomios ordinarios cuando definen funciones simples y suaves. Éstas son usadas en la interpolación spline y en gráficos por computadora.

Ejemplos de funciones polinómicas

Note que las gráficas representan a las funciones polinómicas y no a los polinomios en sí, pues un polinomio solo es la suma de varios monomios.

https://upload.wikimedia.org/wikipedia/commons/1/14/Polynomialdeg2.png

Polinomio de grado 2:
f(x) = x2 - x - 2= (x+1)(x-2).

https://upload.wikimedia.org/wikipedia/commons/f/fa/Polynomialdeg3.png

Polinomio de grado 3:
f(x) = x3/5 + 4x2/5 - 7x/5 - 2=
 1/5 (x+5)(x+1)(x-2).

 

https://upload.wikimedia.org/wikipedia/commons/a/a1/Polynomialdeg4.png

Polinomio de grado 4:
f(x) = 1/14 (x+4)(x+1)(x-1)(x-3) + 0.5.

https://upload.wikimedia.org/wikipedia/commons/c/cd/Polynomialdeg5.png

Polinomio de grado 5:
f(x) = 1/20 (x+4)(x+2)(x+1)(x-1)(x-3) + 2.

La función

f(x)= 13x^4 - 7x^3 + \begin{matrix}\frac{2}{3}\end{matrix} x^2 - 5x + 3

es un ejemplo de función polinómica de cuarto grado, con coeficiente principal 13 y una constante de 3.

Factorización de polinomios

En un anillo conmutativo \scriptstyle A una condición necesaria para que un monomio sea un factor de un polinomio de grado n > 1, es que el término independiente del polinomio sea divisible por la raíz del monomio:

P_n^{}(X) =  a_n X^n + \dots + a_1 X + a_0 = (X-\alpha)Q_{n-1}(X)

necesariamente \alpha_{}^{} divide a a_0^{}.

En caso de que el polinomio no tenga término independiente se sacará la incógnita como factor común y ya está factorizado. También se puede factorizar usando las igualdades notables.

Un polinomio factoriza dependiendo del anillo sobre el cual se considere la factorización, por ejemplo el binomio X_{}^2 -2no factoriza sobre \scriptstyle\mathbb{Q} pero sí factoriza sobre \scriptstyle\mathbb{R}:

X^2 - 2 = (X + \sqrt{2})(X - \sqrt{2})

Por otra parte X_{}^2+2 no factoriza ni sobre \scriptstyle\mathbb{Q}, ni tampoco sobre \scriptstyle\mathbb{R} aunque factoriza sobre \scriptstyle\scriptstyle \mathbb{C}:

X^2 + 2 = (X + i \sqrt{2})(X - i \sqrt{2})

Un cuerpo en el que todo polinomio no constante factoriza en monomios es un cuerpo algebraicamente cerrado.